Explorations 01 - Problem 9

David Hornbeck
August 26, 2013

The problem reads: "Graph the following:"

$$
\begin{aligned}
& x^{2}+y^{2}=1 \\
& x^{3}+y^{3}=1 \\
& x^{4}+y^{4}=1 \\
& x^{5}+y^{5}=1
\end{aligned}
$$

and then asks, "What do you expect for the graph of:

$$
\begin{aligned}
& x^{24}+y^{24}=1 \\
& x^{25}+y^{25}=1
\end{aligned}
$$

First, let's look at the graphs:

Figure 1: $x^{2}+y^{2}=1$

Figure 2: $x^{3}+y^{3}=1$

Figure 3: $x^{4}+y^{4}=1$
Already, we notice a pattern. The first and third graphs - namely, $x^{2}+y^{2}=1$ and $x^{4}+y^{4}=1$ - have points (x, y) in all four quadrants. Indeed, there are (x, y) with $x, y<0$ that satisfy each equation. On the other hand, the graph of $x^{3}+y^{3}=1$ has values in only quadrants $1,2, \& 4 .(\star)$ This pattern is represented by the fact that $r^{n}>0$ for all positive
even $n(n \in 2 \mathbb{N}$, or n of the form $n=2 k, k \in \mathbb{N})$, whereas $r^{n}<0$ for all odd n when $r<0$. Therefore, $x^{n}+y^{n}<0<1 \forall x, y<0$ when n is odd. We can thus anticipate that, since 5 is odd, the graph of $x^{5}+y^{5}=1$ will have a similar shape as Figure 2.

Figure 4: $x^{5}+y^{5}=1$
Now, let us consider more detailed similarities and differences between the graphs. Figures 1 and 3 have convex, compact shapes contained in the Cartesian product $[-1,1] \mathrm{x}[-1,1]$. That the figures are smooth (\& continuous) is clear from the fact that

$$
x^{n}+y^{n}=1 \Rightarrow y=\sqrt[n]{1-x^{n}}
$$

is differentiable on $(-1,1)$ and also defined at $x=1$ and $x=-1$. From this same representation, it is clear that, for n even,

$$
\sqrt[n]{1-x^{n}} \leq \sqrt[n]{1}=1
$$

which determines the range of the function.
Now, the two figures are different in that Figure 3, or $x^{4}+y^{4}=1$ more resembles a square than the well-known unit circle that $x^{2}+y^{2}=1$ creates. In other words, the figure is more rigid. Rather than looking at the derivative, we will use a more intuitive approach to understand the mathematics behind the differences between Figures 1 and 3. We recognize that (for even n) as n increases, it becomes increasingly restrictive for the function $x^{n}+y^{n}$ to equal 1 when x^{n} is very close to 1 . Observe Figures 1 and 3 on the same graph:

Figure 5: $x^{2}+y^{2}=1$ in purple, $x^{4}+y^{4}=1$ in green

For any x_{0} near 1 but not equal to 1 such that $x_{0}^{2}+y_{1}^{2}=1$ and $x_{0}^{4}+y_{2}^{4}=1$, we have

$$
x_{0}^{4}<x_{0}^{2} \Rightarrow y_{2}^{4}>y_{1}^{2} \Rightarrow y_{1}<y_{2}^{2}<y_{2}
$$

for y_{1}, y_{2} positive, $y_{2} \in(0,1)$. (the logic is very similar for $y_{1}, y_{2}<0$).
Therefore, we have $\left(x_{0}, y_{1}\right)$ in Figure 1 closer to the x-axis on the line $x=x_{0}$ than $\left(x_{0}, y_{2}\right)$ in Figure 3.
As this line of thinking applies to all $x \in(0,1), y \in(0,1)$ and can similarly be applied to all other $(x, y) \in[-1,1] \mathrm{x}[-1,1]$, we can now understand the relative rigidity of Figure 3 compared to Figure 1. Further, we can make an educated guess that, since the restriction that $x^{n}+y^{n}=1$ puts onto y is even stronger for larger $n \in 2 \mathbb{N}$, the graph of $x^{24}+y^{24}=1$ will be even more rigid - might it resemble a square?

Let us now look at Figures 2 and 4, the graphs of $x^{3}+y^{3}=1$ and $x^{5}+y^{5}=1$. Both figures resemble the line $y=-x$ on the interval $(-\infty,-1) \cup(1, \infty)$, as shown below. Figures 2 and 4 have the same major disparity that Figures 1 and 3 did; the portion of $x^{5}+y^{5}=1$ with $x \in(-1,1)$ more closely resembles two sides of a square than its counterpart with lower exponents. Similarly, the graph of $x^{5}+y^{5}=1$ "hugs" the graph of $y=-x$ much closer much sooner than Figure 3.

Figure 6: $x^{3}+y^{3}=1$ in blue, $x^{5}+y^{5}=1$ in green, $y=-x$ in black
By using arguments similar to those used to explain the shape of the graphs of Figures 1 and 3 , we would be able to determine why the graph of $x^{5}+y^{5}=1$ is more rigid than that of $x^{3}+y^{3}=1$. What we must question now is

1) how and why the graphs of $x^{n}+y^{n}=1$ differ for n even and odd,
2) what, if the graphs become more "rigid" as n increases, the limit of $x^{n}+y^{n}=1$ is as $n \rightarrow \infty$ (and, with it, what the final rigid shape of each function will be)
The first set of questions is a natural result of the features of exponents discussed in $\boldsymbol{\star}$. Whereas the graphs of the functions in question with n even are very compact (since $x^{2}+y^{2}=1 \Rightarrow x, y \in[-1,1]$), the graphs of such functions with n odd have no such restriction. If we consider the representation of $x^{n}+y^{n}=1$ as

$$
y^{n}=1-x^{n}
$$

then it is clear that for large n odd, and $|x|>1$, the exponential terms will dominate the 1 and the representation will approximate

$$
\begin{aligned}
& y^{n}=-x^{n} \\
& \Rightarrow y=-x
\end{aligned}
$$

It is precisely the fact that x^{n} and y^{n} need not have the same sign that so increases the variability (i.e. larger domain and range) of $x^{n}+y^{n}=1$ when n is odd.
Question(s) 1 is therefore answered; now for the final "form" of each group of functions. It seems from Figures 1 and 3 that even-degreed functions will approach a unit square. Indeed, if we consider the fact that,

$$
\lim _{2 k \rightarrow \infty} x^{k}=0
$$

for all $x \in(-1,1)$, we can determine that as $k \rightarrow \infty$, the only points in $[-1,1] \times[-1,1]$ that satisfy $x^{2 k}+y^{2 k}=1$ are $\{(x, \pm 1) \mid x \in(-1,1)\}$ and $\{(1, \pm y) \mid y \in(-1,1)\}$ - exactly the unit square minus its corners.
For n odd, the behavior of $x^{n}+y^{n}=1$ is nearly identical to the same function with $n+1$ or $n-1$ as the exponent of x and y. When n is odd, large, and $|x|>1$, however, we should get almost exactly the line $y=-x$.

Given all of the above, we predict that $x^{24}+y^{24}=1$ will look to the naked eye just like a square (with very slightly curved corners).

Figure 7: $x^{24}+y^{24}=1$
Similarly, $x^{25}+y^{25}=1$ should resemble the top right half of the unit square for $x \in[-1,1]$ and the line $y=-x$ for $x \in \mathbb{R} \backslash[-1,1]$.

Figure 8: $x^{25}+y^{25}=1$

